Connect with us

News

Get a Filling or Print A New Smile?

Published

on

Twinges. Painful teeth. About one in 10 people suffer from dental sensitivity caused by worn enamel. But rather than providing short-term solutions like special toothpastes or fillings, new techniques could print whole new layers of enamel onto teeth – or even stimulate the body to grow new ones.

Dr Antonios Anastasiou wants to be able to print you a new tooth. He’s not there yet, but a collaboration of material scientists, laser engineers and clinicians at the University of Leeds in the UK, have reached an important milestone along the way. They can print new layers of enamel onto the surface of teeth, preventing the exposure of tiny holes called dentine tubules, that can cause wincing sensitivity to hot and cold as well as become breeding grounds for the bacteria that cause cavities.

Right now, the materials that dentists use to repair enamel can’t provide more than a temporary fix. They fade with time and leave voids that bacteria can get to.

The technology being explored by Dr Anastasiou should overcome these problems.

“We use a material similar to the natural mineral of teeth like hydroxyapatite or some other type of calcium phosphate,” Dr Anastasiou explained.

That new material can be printed onto teeth using a femtosecond laser, which heats up small iron oxide nanoparticles in the material to bond it to the existing dental surface. The small heating area avoids damaging the surrounding tooth. They can also add cerium and other exotic elements to the mix to give the new material antibacterial properties.

“What we are doing is figuring out how to prevent bacteria from colonising the surface.” – Dr Antonios Anastasiou, University of Leeds, UK

“Not only can we restore enamel with a material similar to the original mineral of teeth, we can also improve it. What we are doing is figuring out how to prevent bacteria from colonising the surface,” said Dr Anastasiou.

His solution is also longer lasting. While current restoration materials like resins can shrink over time or with temperature, his material does not. It is also a material that makes it easy for gums to reattach to, helping to prevent an infection of the gums around the mouth known as periodontitis.

Right now, the technique is being trialled as an appliance in dental schools to make sure that there are no long-term side effects and that it can hold up to the rigours of daily life.

“Some patients have it in their mouth and are taking care of it, brushing it, and having it on during eating. If these tests are positive then we can go on to clinical studies,” he said.

Sensitivity

Ultimately, the printed enamel could be out in the marketplace in about five years and could help those who suffer from worn enamel enjoy hot and cold drinks without sensitivity.

“One of our professors said that he got into the research because he wanted to enjoy his whisky with ice,”
Dr Anastatiou joked.

Printing tooth repairs is one thing, but what if your body could be stimulated to regrow a tooth that is lost or damaged?

That’s the aim of Dr Igor Adameyko from the Medical University of Vienna, Austria, who is trying to uncover the secret of how to induce the formation of new teeth using stem cells.

But to do that, he first needed a map.

“For a long time, nobody knew how many cell types and subtypes live in teeth. This knowledge is essential to understand how this organ is developing, growing, and maintaining itself,” said Dr Adameyko.

To undertake such a cell census, he used a process known as single-cell transcriptomics. This new method can break down cells one by one, measuring the RNA – a key molecule similar to DNA that controls which genetic instructions are put into action – of thousands of cells at the same time.

By examining the RNA blueprint of a cell, researchers can figure out what its type and function is. Through that painstaking process, the team has built up an atlas of all the cell types that live in teeth which have also helped him understand how different types of cells interact.

‘Cells exchange signals and these are not some kind of ethereal signals, but quite material. Molecules are made and secreted, and some cells have receptors that can bind to these molecules. We can actually see these pairs in the data set and predict these interactions,’ he said.

Glial cells

Armed with that knowledge, his team has honed in on what controls the life and death of a tooth, as well as what controls the conversion of cells known as glial cells, a type of cell that surrounds and insulates neurons, into dental stem cells that can grow teeth.

Teeth originate from two different types of embryonic tissue – epithelia, which generates cells producing enamel, and mesenchyme which can become bone or the living tissue inside the tooth which is called dental pulp.

Dr Adameyko and his team have also been investigating dental development and regeneration in mice, whose teeth grow throughout their lives because they feed on hard food. Using special chemical manipulation they made the mice’s teeth transparent and watched what happened to the tracked glial cells.

Such knowledge could help the team figure out how to activate glial cells to convert into new stem cells in humans, to grow new roots for regenerating live teeth or crafting a new nerve for a dental implant.

“If this exists in human teeth, by doing this we will be able to find some molecules that strengthen the tooth’s reparative response,” Dr Adameyko said.

Continue Reading

Featured

Can These Proteins Cure Cavities?

Published

on

Researchers at the University of Washington have designed a convenient and natural product that uses proteins to rebuild tooth enamel and treat dental cavities.

The research finding was first published in ACS Biomaterials Science and Engineering.

“Remineralization guided by peptides is a healthy alternative to current dental health care,” said lead author Mehmet Sarikaya, professor of materials science and engineering and adjunct professor in the Department of Chemical Engineering and Department of Oral Health Sciences.

The new biogenic dental products can — in theory — rebuild teeth and cure cavities without today’s costly and uncomfortable treatments.

“Peptide-enabled formulations will be simple and would be implemented in over-the-counter or clinical products,” Sarikaya said.

Cavities are more than just a nuisance. According to the World Health Organization, dental cavities affect nearly every age group and they are accompanied by serious health concerns. Additionally, direct and indirect costs of treating dental cavities and related diseases have been a huge economic burden for individuals and health care systems.

“Bacteria metabolize sugar and other fermentable carbohydrates in oral environments and acid, as a by-product, will demineralize the dental enamel,” said co-author Sami Dogan, associate professor in the Department of Restorative Dentistry at the UW School of Dentistry.

Although tooth decay is relatively harmless in its earliest stages, once the cavity progresses through the tooth’s enamel, serious health concerns arise. If left untreated, tooth decay can lead to tooth loss. This can present adverse consequences on the remaining teeth and supporting tissues and on the patient’s general health, including life-threatening conditions.

Good oral hygiene is the best prevention, and over the past half-century, brushing and flossing have reduced significantly the impact of cavities for many Americans. Still, some socio-economic groups suffer disproportionately from this disease, the researchers said. And, according to recent reports from the Centers for Disease Control and Prevention, the prevalence of dental cavities in Americans is again on the rise, suggesting a regression in the progress of combating this disease.

Taking inspiration from the body’s own natural tooth-forming proteins, the UW team has come up with a way to repair the tooth enamel. The researchers accomplished this by capturing the essence of amelogenin — a protein crucial to forming the hard crown enamel — to design amelogenin-derived peptides that biomineralize and are the key active ingredient in the new technology. The bioinspired repair process restores the mineral structure found in native tooth enamel.

“These peptides are proven to bind onto tooth surfaces and recruit calcium and phosphate ions,” said Deniz Yucesoy, a co-author and a doctoral student at the UW.

The peptide-enabled technology allows the deposition of 10 to 50 micrometers of new enamel on the teeth after each use. Once fully developed, the technology can be used in both private and public health settings, in biomimetic toothpaste, gels, solutions and composites as a safe alternative to existing dental procedures and treatments. The technology enables people to rebuild and strengthen tooth enamel on a daily basis as part of a preventive dental care routine. It is expected to be safe for use by adults and children.

Continue Reading

News

Is the Sweet Tooth Gene Connected With Having Less Body Fat?

Published

on

People with a gene variation of FGF21 have a predisposition to less body fat than others, new research conducted at the University of Copenhagen, among others, shows.

It comes as a bit of a surprise to the researchers, who last year discovered that precisely this genetic variation could be one of the reasons why some people have a particular craving for sweet things. People with this variation eat more sugar than others.

‘It sort of contradicts common intuition that people who eat more sugar should have less body fat. But it is important to remember that we are only studying this specific genetic variation and trying to find connections to the rest of the body. This is just a small piece of the puzzle describing the connection between diet and sugar intake and the risk of obesity and diabetes’, says one of the researchers behind the study, Associate Professor Niels Grarup from the Novo Nordisk Foundation Center for Basic Metabolic Research.

Higher Blood Pressure and More ‘Apple Shape’

But the effects associated with the genetic variation are not all positive, the new study shows. The genetic variation is connected with slightly increased blood pressure and more fat around the waist than the hips — that is, more ‘apple shape’.

The study is an international collaboration headed by researchers at the University of Exeter Medical School and has just been published in the scientific journal Cell Reports.

The researchers’ conclusions are based on large amounts of data. They have studied health information from more than 450,000 individuals who have allowed their data to be recorded in the UK Biobank. It includes blood samples, questionnaires on diet and genetic data, among other things.

‘Now that so many people are involved in the study, it gives our conclusions a certain robustness. Even though the difference in the amount of body fat or blood pressure level is only minor depending on whether or not the person has this genetic variation or not, we are very confident that the results are accurate. Around 20 per cent of the European population has this genetic predisposition’, says Niels Grarup.

Potential Drug Target

This new knowledge about people with a ‘genetic sweet tooth’ is mainly important in connection with the development of drugs and future research. Because researchers are currently trying to determine whether it is possible to target or replace FGF21 using drugs in order to treat for obesity and diabetes.

‘Due to its connection with sugar, FGF21 constitutes a potential target in the treatment of for example obesity and diabetes. This research helps us to understand the underlying mechanisms of the hormone and to predict its effects and side effects’, says Niels Grarup.

The study is funded by the European Research Council (ERC), the National Institute of Health (NIH) and the Novo Nordisk Foundation, among others.

Continue Reading

News

Losing Teeth During Middle Age Linked To An Increased Risk Of Cardiovascular Disease

Published

on

Losing two or more teeth in middle age is associated with increased cardiovascular disease risk, according to preliminary research presented at the American Heart Association’s Epidemiology and Prevention | Lifestyle and Cardiometabolic Health Scientific Sessions 2018, a premier global exchange of the latest advances in population-based cardiovascular science for researchers and clinicians.

Studies have shown that dental health problems, such as periodontal disease and tooth loss, are related to inflammation, diabetes, smoking and consuming less healthy diets, according to study author Lu Qi, M.D., Ph.D., professor of epidemiology at Tulane University in New Orleans.

“Previous research has also found that dental health issues are associated with elevated risk of cardiovascular disease,” Qi said.

“However, most of that research looked at cumulative tooth loss over a lifetime, which often includes teeth lost in childhood due to cavities, trauma and orthodontics. Tooth loss in middle age is more likely related to inflammation, but it hasn’t been clear how this later-in-life tooth loss might influence cardiovascular disease risk.”

In a collaborative research effort between Tulane University School of Public Health and Tropical Medicine and Harvard T.H. Chan School of Public Health, Qi and colleagues analyzed the impact of tooth loss in large studies of adults, aged 45 to 69 years, in which participants had reported on the numbers of natural teeth they had, then in a follow-up questionnaire, reported recent tooth loss. Adults in this analysis didn’t have cardiovascular disease when the studies began. The researchers prospectively studied the occurrence of tooth loss during an eight-year period and followed an incidence of cardiovascular disease among people with no tooth loss, one tooth lost and two or more teeth lost over 12-18 years.

They found:

  • Among the adults with 25 to 32 natural teeth at the study’s start, those who lost two or more teeth had a 23 percent increased risk of cardiovascular disease, compared to those with no tooth loss.
  • The increased risk occurred regardless of reported diet quality, physical activity, body weight and other cardiovascular risk factors, such as high blood pressure, high cholesterol and diabetes.
  • There wasn’t a notable increase in cardiovascular disease risk among those who reported losing one tooth during the study period.
  • Cardiovascular disease risk among all the participants (regardless of the number of natural teeth at the study’s start) increased 16 percent among those losing two or more teeth during the study period, compared to those who didn’t lose any teeth.
  • Adults with less than 17 natural teeth, versus 25 to 32, at the study’s start, were 25 percent more likely to have cardiovascular disease.

“In addition to other established associations between dental health and risk of disease, our findings suggest that middle-aged adults who have lost two or more teeth in recent past could be at increased risk for cardiovascular disease,” Qi said.

“That’s regardless of the number of natural teeth a person has as a middle-aged adult, or whether they have traditional risk factors for cardiovascular disease, such as poor diet or high blood pressure.”

Armed with the knowledge that tooth loss in middle age can signal elevated cardiovascular disease risk, adults can take steps to reduce the increased risk early on, he said.

A limitation of the study was that participants self-reported tooth loss, which could lead to misclassification in the study, according to Qi.

Continue Reading

Trending